Are functionally important contacts established between the N-terminus and extracellular loop-1 of the V_{1a} vasopressin receptor?

R. Kendrick1, J. Simms1, D.L. Wootten1, J. Trim2 and M. Wheatley1

1School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK and 2Ferring Research Ltd., Southampton Science Park, 1 Ventura Road, Southampton SO16 7NP, UK

The V_{1a} vasopressin receptor (V_{1a}R) is a Family A G-protein-coupled receptor (GPCR), activated by the neurohypophysial peptide hormone [arginine8]vasopressin (AVP). We have previously shown that Arg46 in the N-terminus of the V_{1a}R is essential for the high affinity binding of AVP to the V_{1a}R. This arginyl residue is conserved in all members of the neurohypophysial peptide hormone receptor family suggesting an important role in the functioning of these receptors. The exact function and mechanism of action of Arg46 has yet to be elucidated, although it is believed to play a role in constraining the inactive state or the V_{1a}R. Furthermore, Arg46 can not be functionally substituted by any other residue, including Lys. Residues in extracellular loop-1 (ECL1) have also been implicated in high affinity agonist binding using a range of approaches including peptide mimetics, mutagenesis and direct labelling by a photoaffinity analogue of AVP. This study investigates if there is any functional interaction between Arg46 in the N-terminal domain and specific residues in ECL1 using a combination of reciprocal mutagenesis and pharmacological characterisation.