Gram-positive bacteria are capable of complete denitrification converting nitrate via nitrite, nitric oxide and nitrous oxide to dinitrogen. Unlike gram-negative bacteria, gram-positive bacteria have a very small periplasmic-like space. This leads to the question whether those enzymes and electron carriers involved in denitrification, which are normally located in the periplasmic space in gram-negative bacteria, are located in the periplasmic-like space in gram-positive bacteria or have been modified as membrane-bound proteins.

Employing *Bacillus azotoformans* as a gram-positive bacterial model, our initial study demonstrates that anaerobic denitrification is catalysed by four membrane-bound enzymes and that the electron carriers are membrane-bound cytochromes c and menaquinol. NADH dehydrogenase is coupled to the denitrification pathway providing menaquinol. In addition, the cytochrome b_6f complex forms part of the denitrification pathway, oxidizing menaquinol and reducing at least three different membrane-bound cytochromes c. We determined that the NO reductase, qCu_ANOR, can accept electrons from two donors, a specific cytochrome c_{551} and menaquinol. Similarly, nitrite reductase, a copper enzyme, and N_2O reductase may be bifunctional enzymes. Regarding the bifunctionality of qCu_ANOR, we propose that the menaquinol-linked pathway is involved in NO detoxification and the cytochrome c_{551} pathway in denitrification including the cytochrome b_6f, thus serving the bioenergetic needs of the organism.