cAMP oscillations restrict spatial redistribution of protein kinase A in insulin-secreting cells

Anders Tengholm, Oleg Dyachok, Jenny Sågetorp and Yegor Isakov
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

Activation of hormone receptors has been demonstrated to cause oscillations of the cAMP concentration beneath the plasma membrane ([cAMP]) of insulin-secreting cells. In this study we investigated the effect of different time-courses of [cAMP] signals on the generation of cytoplasmic Ca$^{2+}$ concentration ([Ca$^{2+}$]) signals and on the nuclear translocation of the protein kinase A catalytic subunit in individual INS-1 β-cells. [cAMP] was measured with a new fluorescent translocation biosensor and ratiometric evanescent wave microscopy. Oscillations and stable elevation of [cAMP] was artificially generated by constant or pulsatile inhibition of phosphodiesterases with IBMX. Both stimulation protocols induced [Ca$^{2+}$]$_i$ oscillations and in the case of oscillatory [cAMP] elevations, the [Ca$^{2+}$]$_i$ responses were grouped and correlated with the periods of elevated [cAMP]. Analysis of the nuclear translocation of PKA was performed with epifluorescence microscopy and FlAsH-labelling of tetracysteine-tagged PKA-Cα subunit. Whereas 25 min of stable [cAMP] elevation induced a pronounced rise of the nuclear/cytoplasmic FlAsH fluorescence ratio, the distribution of PKA-Cα in the cells exposed to [cAMP] oscillations did not differ from that in non-stimulated cells. These results indicate that temporal encoding of cAMP signals may constitute a basis for differential regulation of downstream cellular targets.