TOR (target of rapamycin) is a highly conserved serine/threonine kinase that controls cell growth and metabolism in response to nutrients, growth factors, cellular energy, and stress. TOR was originally discovered in yeast but is conserved in all eukaryotes including plants, worms, flies, and mammals. The discovery of TOR led to a fundamental change in how one thinks of cell growth. It is not a spontaneous process that just happens when building blocks (nutrients) are available, but rather a highly regulated, plastic process controlled by TOR-dependent signaling pathways. TOR is found in two structurally and functionally distinct multiprotein complexes, TORC1 and TORC2. The two TOR complexes, like TOR itself, are highly conserved. Thus, the two TOR complexes constitute an ancestral signaling network conserved throughout eukaryotic evolution to control the fundamental process of cell growth. As a central controller of cell growth, TOR plays a key role in development and aging, and is implicated in disorders such as cancer, cardiovascular disease, obesity, and diabetes.

While the role of TOR in controlling growth of single cells is relatively well understood, the challenge now is to understand the role of TOR signaling in coordinating and integrating overall body growth and metabolism in multicellular organisms. This will require elucidating the role of TOR signaling in individual tissues. Data on the role of mTORC1 and mTORC2 in specific tissues will be presented. Recent results on the mechanism of mTORC2 regulation will also be presented.