We examined the trafficking and signalling of WT-MOPr in comparison with that of a recently identified naturally occurring variant (L83I) in HEK293 cells. Using ELISA, DAMGO induced a similar extent of internalization of both the WT-MOPr and the L83I variant. In contrast, morphine induced significant internalization of the L83I variant but had little effect on the WT-MOPr. Inhibition of dynamin function with dynasore inhibited the DAMGO-induced internalization of both the WT-MOPr and the L83I variant and the morphine-induced internalization of the L83I variant. Expression of DNM GRK2 attenuated the internalization of the L83I variant in response to both DAMGO and morphine, in addition to inhibiting the WT-MOPr response to DAMGO. Following immunoprecipitation of MOPr, DAMGO induced substantial phosphorylation of Ser375 in both receptors, morphine induced far less phosphorylation, but morphine-induced phosphorylation was the same for WT-MOPr and L83I. We were able to detect co-immunoprecipitation of arrestins with the DAMGO- but not morphine-activated receptors. Investigations of cAMP signalling revealed no significant change in the EC$_{50}$ of either DAMGO or morphine when compared to values obtained for the WT-MOPr. These results show that the L83I variant rapidly internalizes in response to morphine in a GRK- and dynamin-dependent manner. The enhanced internalization of L83I in response to morphine is not due to increased phosphorylation of Serine375, increased ability of MOPr to interact with arrestins, or an increased ability to signal via G-proteins.