Identification of new functional selective oxytocin-derived agonists that discriminate between individual G protein family subtypes.

Marta Busnelli¹, Olimpia Gamucci¹, Erika Donà¹, Bianca Silva¹, Maurice Manning², Céline Gales³ and Bice Chini⁴

¹CNR Institute of Neuroscience, Milan, Italy
²University of Toledo, Toledo, U.S.A.
³Inserm/UPS UMR 1048 - I2MC, Toulouse, France
⁴CNR, Milan, Italy

The Oxytocin receptor (OTR), like many other G-Protein Coupled Receptors (GPCRs), can couple to more than one class of G-proteins and we demonstrated that oxytocin (OT) promotes the receptor-mediated engagement and activation of G_q and all the $G_{i/o}$-family members. We used a BRET biosensor to screen for functional selective ligands of the human OTR; these analogs, by targeting only one specific signal transduction pathway at a time, may be of great pharmacological and clinical relevance. Among the OT-analogues tested, a number behaved as biased agonists at different G protein subtypes. Particularly, with only one exception, all the peptides that activated G_q also activated G_{i2} and G_{i3}, but not G_{i1}, and none of them activated G_{oA} or G_{oB}. Two peptides (DNalOVT and atosiban) activated only G_{i1} or G_{i3}, but failed to recruit beta-arrestins and to cause receptor internalization. The development of a fluorescent derivative of atosiban allowed us to visualize, by in vivo confocal experiments, its in vivo binding to receptors, and to confirm the impaired ligand-induced receptor internalization. Finally, DNalOVT and atosiban inhibited cell proliferation, showing that a single G_i subtype-mediated pathway is sufficient to prompt this physiological response. These analogs represent unique tools for examining the contribution of $G_{i/o}$ members in complex biological responses and open the way to the development of drugs with peculiar selectivity profiles characterized by long-lasting activity.