Providing a timely snapshot of the latest developments, *Biochemical Society Transactions* is a fully commissioned journal publishing mini-reviews from across all areas of the molecular and cellular biosciences.

Editor-in-Chief
Colin Bingle (University of Sheffield, UK)

Associate Editors

Marnie Blewitt (Walter and Eliza Hall Institute of Medical Research, Australia)
Alexandre Bruni-Cardoso (Universidade de São Paulo, Brazil)
Jiamu Du (Southern University of Science and Technology, China)
Clare Hawkins (University of Copenhagen, Denmark)
Sang Yup Lee (Korea Advanced Institute of Science and Technology, South Korea)
James Murphy (Walter and Eliza Hall Institute of Medical Research, Australia)
Ivan Robert Nabi (University of British Columbia, Canada)
Johann M. Rohwer (Stellenbosch University, South Africa)
Stefanie Rosa (Linnean Centre for Plant Biology, Sweden)
Helen Walden (University of Glasgow, UK)
Michael Williamson (University of Sheffield, UK)

Articles

- Towards structure-focused glycoproteomics
- DNA methylation: from model plants to vegetable crops
- Engineered cell-laden alginate microparticles for 3D culture
- The effect of Irisin on bone cells *in vivo* and *in vitro*
- Inhibition of RAF dimers: it takes two to tango
- Parkinson’s disease and mitophagy: an emerging role for LRRK2
As the Biochemical Society’s publisher, we work in partnership with researchers, institutions, and funders to share knowledge and advance the molecular biosciences.

Publishing world-leading research and reviews across our portfolio of seven journals, we return all of our profits to the life science community in support of our Society’s charitable activities. With more than four million worldwide views in 2021, our journals cover the depth and breadth of the molecular biosciences, from observational work to interpreting mechanisms, from translating basic research into medical insights to foundational overviews of new and emerging topics.

Cover Image

The cover shows a metaphorical representation of the anti-CRISPR AcrIIA6, represented as handcuffs, sequestering two Streptococcus thermophilus CRISPR-Cas9 (St1Cas9) molecules at a time and preventing conformational changes associated with DNA recognition and binding. In the absence of AcrIIA6, St1Cas9 tightly binds to its target DNA, and can proceed to target cleavage. This cover artwork has been made by Beata Edyta Mierzwa (www.BeataScienceArt.com).

doi.org/10.1042/BST20190638