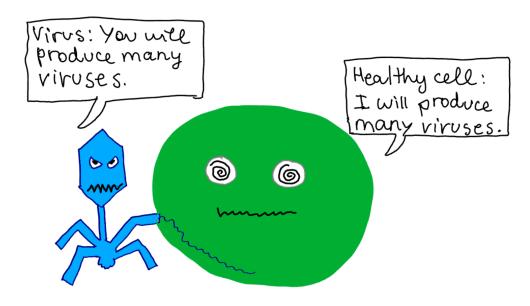

Viruses Fighting Cancer: From Killers to Cure

Imagine sitting in a hospital chair, waiting for your treatment. But instead of chemotherapy drugs, you are injected with a virus. A virus, you heard me right. These are the very creatures responsible for colds, flu, and even deadly pandemics. However, it's not an ordinary virus. It is a specially engineered one, now your cancer-fighting ally. This virus enters the tumor, multiplies, and bursts the malignant cells (a process called lysis), and, most importantly, triggers an immune response that can help the immune system recognize and attack cancer elsewhere in the body.

This scenario is not science fiction. In 2015, the U.S. Food and Drug Administration approved **T-VEC** (**Talimogene Laherparepvec**), a genetically engineered herpes simplex virus, for the treatment of adults with unresectable melanoma lesions, delivered by direct injection into the tumours. For the first time in Western medicine, a virus was officially recognized not as an enemy, but as a cancer-fighting tool. **T-VEC** represents more than just a medical breakthrough; it signals a new era in cancer treatment, one in which nature's ancient "villains" may become our greatest allies.

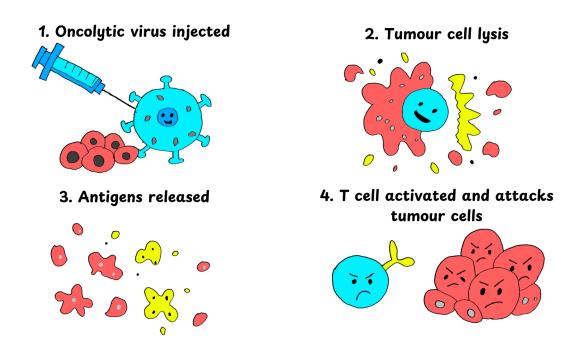


What are viruses, and how can they be helpful?

Viruses are often described as "tiny invaders", but the truth is even stranger. A virus is a tiny bundle of genetic material (**DNA** or **RNA**) wrapped in a protective protein coat. Unlike bacteria, they can't survive or reproduce on their own. Instead, they act like hackers breaking into a computer: they sneak into a host cell, hijack its machinery, and

force the cell to make thousands of viral copies. Eventually, the overwhelmed cell bursts, releasing new virus particles that go on to infect more cells.

This destructive behaviour is the reason why viruses have such a bad reputation. From measles to **HIV** to **COVID-19**, viruses have caused countless epidemics and tragedies throughout history. Yet the same property that makes them dangerous, the ability to infiltrate and destroy, can make them useful. If we can redirect this destructive power towards cancer cells, viruses could be repurposed as precision-guided weapons against tumour cells.


How do oncolytic viruses work?

Oncolytic viruses are not your everyday cold viruses. They are carefully engineered to seek out and destroy cancer cells while leaving healthy cells unharmed.

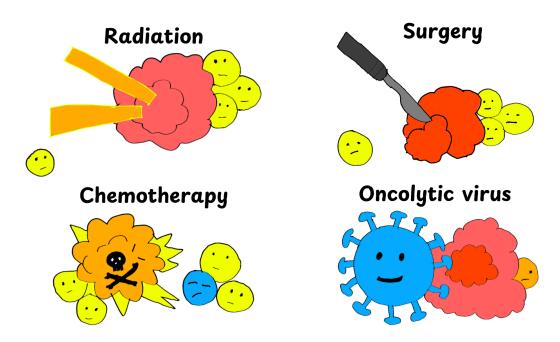
This process occurs in several steps:

- 1. **Targeting the tumour**: The engineered virus is designed to recognize and infect cancer cells more easily than normal ones.
- 2. **Replication and destruction**: Once inside the infected cell, in this case a cancer cell, the virus inserts its viral DNA and starts replicating until the infected cell bursts (a process called lysis).
- 3. **Release of antigens**: When the cell bursts, it releases new viral particles, while also spilling cancer-specific molecules called **antigens**.

4. **Immune training**: These antigens act as "red flags" that train the immune system. Specifically, they reach and activate T Cells, allowing them to recognize and kill cancer cells throughout the body.

In other words, an oncolytic virus acts as a Trojan horse. It sneaks into the tumour, multiplies, and destroys it from within, while at the same time recruiting the immune system to hunt down any cancer that escaped.

T-VEC is a prime example. It is derived from the herpes simplex virus (the same virus that normally causes cold sores), but genetically altered so it preferentially infects tumour cells and is generally well tolerated, though mild side effects like flu-like symptoms may occur. In addition, scientists added a gene that makes the virus produce a protein called GM-CSF, which boosts an immune response. When injected directly into melanoma tumours, T-VEC not only shrinks them but also trains the immune system to find and attack cancer elsewhere. This approach has led to durable remissions in a subset of patients, something traditional treatments often struggle to provide.


Why do traditional treatments fall short?

For decades, cancer therapy has revolved around three "pillars": surgery, radiation, and chemotherapy. These treatments save millions of lives each year, but they are blunt tools with significant drawbacks:

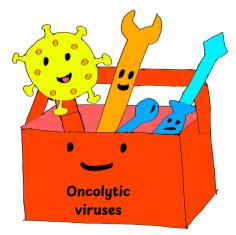
- **Surgery** removes visible tumours, but cannot catch microscopic cells that have already spread.
- **Radiation** damages DNA in cancer cells, but also harms surrounding healthy tissue.
- Chemotherapy targets rapidly dividing cells, which include cancer cells, but also hair follicles, the gut lining, and bone marrow, causing side effects like nausea, fatigue, and hair loss.

Even when these treatments work, cancer can adapt. Tumours evolve resistance to chemotherapy, hide in immune-privileged zones like the brain, or return after months or years. For many patients, remission is temporary.

Oncolytic viruses promise two things: precision and adaptability. They attack tumours directly, and at the same time, they enlist the immune system for long-term protection. Instead of fighting blindly, the immune system learns to recognize cancer as an enemy.

Other Oncolytic Viruses

T-VEC may have been the first virus officially approved for cancer, but it is not alone. Scientists worldwide are experimenting with a wide variety of viruses.


One example is adenoviruses, common viruses that cause mild colds. A modified form called **ONYX-015** was among the first tested on humans. It was designed to replicate

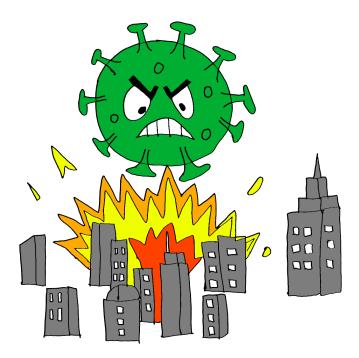
more efficiently inside cancer cells lacking a key tumour-suppressor gene (p53), though later studies showed the biology was more complex than originally thought. While **ONYX-015** did not become a standard treatment, it proved that viruses could be made selective.

Another example is reovirus, a naturally occurring virus that tends to infect cells with abnormal growth signals, exactly the kind found in tumours. Clinical trials have shown that reoviruses can be safely given through the bloodstream and can reach some tumours, though effectiveness varies.

Even more surprising is the measles virus. Once a childhood terror, it has shown potential in treating blood cancers such as multiple myeloma. In a striking Mayo Clinic case study, a woman with advanced multiple myeloma experienced a complete remission after receiving an engineered measles virus infusion, though this outcome is very rare.

However, these different examples also show that there's no single "magic bullet virus". Instead, different cancers may require different viral partners. The future of virotherapy could look less like a universal cure and more like a toolbox, with each virus serving a specific role.

Different tools for different cancers.


Challenges and risks

Despite their promise, oncolytic viruses are not miracle cures, at least not yet. Turning a notorious enemy into a medical ally comes with obstacles.

One challenge is the immune system itself. Ironically, the very defences that protect us from viruses can limit their effectiveness. If the immune system clears out the virus too quickly, it may not have enough time to infect and destroy tumours. Scientists are exploring ways to "cloak" viruses or give them alongside immune-modifying drugs to balance safety with effectiveness.

Another issue is delivery. T-VEC must be injected directly into a tumour that doctors can reach using a needle. This works well for skin cancers like melanoma, but it is much harder to target deep-seated cancers of the pancreas or brain. Intravenous delivery is the ultimate goal, but it requires engineered viruses that can survive in the bloodstream and live in cancer cells.

There exists an even bigger issue: safety. Scientists carefully monitor safety; while theoretical risks like viral mutation or unintended spread are discussed, approved and late-stage oncolytic viruses have shown good safety and genetic stability so far. However, public fears, especially since the COVID-19 pandemic, can make acceptance difficult.

The future: viruses and beyond

So where does this field go from here? The answer lies in combination therapies. Scientists are testing combinations of oncolytic viruses with immune checkpoint inhibitors. Early small studies looked promising, but the large MASTERKEY-256 trial of T-VEC with pembrolizumab did not meet its endpoints, so research is ongoing.

Another solution is personalized virotherapy. Tumours vary widely from patient to patient, so a one-size-fits-all virus is unlikely to work. Instead, doctors may one day sequence a patient's tumour, identify its vulnerabilities, and select or even design a virus tailored for those weaknesses.

Synthetic biology also opens thrilling possibilities: rather than exploiting existing viruses, scientists can now build viruses from scratch. This could turn a virus into something like software, where once the mission is complete, it can self-destruct.

Conclusion

Picture once more the patient in the hospital chair. Instead of going through very painful chemotherapy or exhausting cycles of radiation, they receive an injection of a virus. That virus multiplies, bursts cancer cells, and whispers to the immune system: *This is the enemy. Hunt it down*.

For centuries, viruses have been our enemies. They shut down cities, decimate populations, and fill history books with fear. But modern science has shown that their destructive nature could be repurposed and reshaped into a force of healing.

The journey from killer to cure is not complete. Challenges remain, and many questions are unanswered. Yet the approval of T-VEC, the trials of adenoviruses, reoviruses, and even measles, all point to a single truth: our relationship with viruses is evolving.

Perhaps one day, the word "virus" will no longer conjure only fear, but also hope; the hope that once threatened our lives may ultimately save them.

Further Reading

Russell, S. J., Federspiel, M. J., Peng, K. W., et al.
 Remission of Disseminated Cancer After Systemic Oncolytic Virotherapy.
 Mayo Clinic Proceedings (2014) 89(7): 926–933.
 https://www.mayoclinicproceedings.org/article/S0025-6196(14)00332-2/fulltext

• Khuri, F. R., Nemunaitis, J., Ganly, I., et al.

A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer.

Nature Medicine (2000) 6: 879–885.

https://www.nature.com/articles/nm0800 879

- Bommareddy, P. K., Shettigar, M., & Kaufman, H. L.
 Integrating Oncolytic Viruses in Combination Cancer Immunotherapy. Nature Reviews Immunology (2018) 18(8): 498–513.
 https://doi.org/10.1038/s41577-018-0014-6
- Ribas, A., Dummer, R., Puzanov, I., et al.

Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy.

Cell (2017) 170(6): 1109-1119.e10.

https://doi.org/10.1016/j.cell.2017.08.027

• Choi, A. H., O'Leary, M. P., Fong, Y., & Chen, N. G.

From Benchtop to Bedside: A Review of Oncolytic Virotherapy.

Biomedicines (2016) 4(3): 18.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344257/

• National Cancer Institute.

Oncolytic Virus Therapy: Using Tumor-Targeting Viruses to Treat Cancer Cancer Currents Blog (2018).

https://www.cancer.gov/news-events/cancer-currents-blog/2018/oncolytic-viruses-to-treat-cancer

• National Cancer Institute.

FDA Approves Talimogene Laherparepvec to Treat Metastatic Melanoma
Cancer Currents Blog (2015).

https://www.cancer.gov/news-events/cancer-currents-blog/2015/t-vec-melanoma